Identification of human cytochrome P450s involved in the formation of all-trans-retinoic acid principal metabolites.

نویسندگان

  • J Marill
  • T Cresteil
  • M Lanotte
  • G G Chabot
چکیده

Cytochrome P450 (P450)-dependent metabolism of all-trans-retinoic acid (atRA) is important for the expression of its biological activity. Because the human P450s involved in the formation of the principal atRA metabolites have been only partially identified, the purpose of this study was to identify the human P450s involved in atRA metabolism. The use of phenotyped human liver microsomes (n = 16) allowed the identification of the following P450s: 2B6, 2C8, 3A4/5, and 2A6 were involved in the formation of 4-OH-RA and 4-oxo-RA; 2B6, 2C8, and 2A6 correlated with the formation of 18-OH-RA; and 2A6, 2B6, and 3A4/5 activities correlated with 5, 6-epoxy-RA formation (30-min incubation, 10 microM atRA, HPLC separation, UV detection 340 nm). The use of 15 cDNA-expressed human P450s from lymphoblast microsomes, showed the formation of 4-OH-RA by CYP3A7 > CYP3A5 > CYP2C18 > CYP2C8 > CYP3A4 > CYP2C9, whereas the 18-OH-RA formation involved CYPs 4A11 > 3A7 > 1A1 > 2C9 > 2C8 > 3A5 > 3A4 >2C18. Kinetic studies identified 3A7 as the most active P450 in the formation of three of the metabolites: for 4-OH-retinoic acid, 3A7 showed a V(max)/K(m) of 127.7, followed by 3A5 (V(max)/K(m) = 25.6), 2C8 (V(max)/K(m) = 24.5), 2C18 (V(max)/K(m) = 15.8), 3A4 (V(max)/K(m) = 5.7), 1A1 (V(max)/K(m) = 5.0), and 4A11 (V(max)/K(m) = 1.9); for 4-oxo-RA, 3A7 showed a V(max)/K(m) of 13.4, followed by a 10-fold lower activity for both 2C18 and 4A11 (V(max)/K(m) = 1.2); and for 18-OH-RA, 3A7 showed a V(max)/K(m) of 10.5 compared with a V(max)/K(m) of 2.1 for 4A11 and 2.0 for 2C8. 5,6-Epoxy-RA was only detected at high substrate concentrations in this system (>10 microM), and P450s 2C8, 2C9, and 1A1 were the most active in its formation. The use of embryonic kidney cells (293) stably transfected with human P450 cDNA confirmed the major involvement of P450s 3A7, 1A1, and 2C8 in the oxidation of atRA, and to a lesser extent, 1A2, 2C9, and 3A4. In conclusion, several human P450s involved in atRA metabolism have been identified, the expression of which was shown to direct atRA metabolism toward the formation of specific metabolites. The role of these human P450s in the biological and anticancer effects of atRA remains to be elucidated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel human cytochrome P450, CYP26C1, involved in metabolism of 9-cis and all-trans isomers of retinoic acid.

Retinoids are potent regulators of cell proliferation, cell differentiation, and morphogenesis and are important therapeutic agents in oncology and dermatology. The gene regulatory activity of endogenous retinoids is effected primarily by retinoic acid isomers (all-trans and 9-cis) that are synthesized from retinaldehyde precursors in a broad range of tissues and act as ligands for nuclear reti...

متن کامل

The effect of bilateral intrahippocampal injection of all–trans retinoic acid on spatial learning in adult male rats.

Introduction: Previous studies have shown that vitamin A and its derivatives such as retinoid and all-trans retinoic acid have a crucial role in memory, learning and synaptic plasticity. The receptors of vitamin A are seen in different parts of the brain such as hippocampus, where vitamin A has an important role in learning. In this study, the effect of intrahippocampal (CA1) injection of al...

متن کامل

Identification of the human cytochrome P450, P450RAI-2, which is predominantly expressed in the adult cerebellum and is responsible for all-trans-retinoic acid metabolism.

Retinoids, particularly all-trans-retinoic acid (RA), are potent regulators of cell differentiation, cell proliferation, and apoptosis. The role of all-trans-RA during development and in the maintenance of adult tissues has been well established. The control of all-trans-RA levels in cells and tissues is regulated by the balance between its biosynthesis and its catabolism to inactive metabolite...

متن کامل

تاثیر غلظت‌های مختلف ال- ترانس رتینوئیک اسید بر رشد و بقای سلول‌های بنیادی فولیکول‌ موی موش سوری

Background and Objective: Hair follicle stem cells are multipotent, located in the bulge area, and are highly proliferating. Retinoids have an effect on epidermal differentiation and keratinization. Retinoic acid is used to treat some skin diseases such as Melasma, Acne and Ichthyosis. So, the study of all-trans retinoic acid effect on hair follicle stem cells and determination of the effective...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 58 6  شماره 

صفحات  -

تاریخ انتشار 2000